| 1""‘:‘4*'2020 ST sl

‘ . ‘l-ng“Sy‘ optic ,571” copé”

R, 0.

Des pEta-octets de donnees dans i
Kubernetes c est pass:ble' |

.. .'.‘. - .._.-_ X

Fa brlce Jammes e e
‘Scalable Data Systems Expert’ ir g : :
IN2P3/LSST-Corporat|on RN e

v - v o A
ok .- o : - . - o e RS T 3 »- s g
> A T . - Bk o . : ¥ 3 » -

¥ It . - . - > T o o T, & s h Y . = .Y ;

ve:! Cred.uts.. ot '-'. -

a Large Synoptic Survey Telescope
a Qserv: LSST Petascale database
e Benefits of Cloud-Native

o On-premise vs Public Cloud

LSST in short

Large Synoptic Survey Telescope

Large aperture, wide-field, ground-based survey
telescope
The largest imager ever built for astronomy

Characteristics

*
*
*
*
*

EB> U.S. DEPARTMENT OF

All visible sky in 6 bands
~200000

15 seconds exposures, 1 visit/3 days
During 10 years! IF N 2 P 3

S — |
60 PB of raw data Instrur NATIONAL DE PH\'SI?,UE NuCLEAIRE

ET DE PHYSIQUE DES ARTICULES

80+ PB of astronomical catalog

Processed image

LSST will build a catalog of 20 billion galaxies

and 17 billion stars and their associated Catalog (stars, galaxies,
ObJeCtS, Sources,tranSIentS,

physical properties exposures, etc.) 4

Images
Persisted: ~38 PB
Temporary: ~%2 EB

mnlion “visits”
* ~47 billion“objects”
* ~9trillion "dW

Largest table: ~5 PB
Tallest table: ~50 trillion rows
Total (all data releases, compressed):

~83 PB

* % %

Ad-hoc user-generated data
Rich provenance

-~

Q S e rV The LSST Petascale database

Who we are

Database and Data access team
% 10 engineers at Stanford University + 1 IN2P3

o Software development

Stanford Si_AL

LOINEP3 KN

NCSA

Operations teams
* 5 sysadmins at NCSA/IN2P3

o Large Scale development platforms
o Cloud Native / Kubernetes
o System administration, Monitoring

Laboratoire de Physique de Clermont

Qserv design

Relational database, 100% open source

Spatially-sharded with overlaps
Map/reduce-like processing, highly distributed -

N
o) (o)
/ NS

[MariaDB) MariaDB [MariaDB) MariaDB)
node node | node) node]
— — —
Partitioned Partitioned Partitioned Partitioned
data data data data

From Cloud-Native to Bare-Metal

Target for production

~1000 nodes cluster in 2 international

Academic data-centers
kubernetes |

Running now

Development platform (CC-IN2P3)
1000 cores, 15 TB memory

15 PB storage

=> Large scale test: 300 TB synthetized data

=> Ingestion of DESC-DC2 data (1 TB)

Prototype Data Access Center (NCSA)
500 cores, 4 TB memory
700 TB storage,

=> WISE catalog (“real” dataset)

CCIN2P3

Centre de Calcul
de I'Institut National de Physique Nucléaire
et de Physique des Particules

¢ Cnrs

Qserv Platform @ CC-IN2P3

Bastien Gounon

Platform Overview

dedicated hardware:
3 x Kubernetes masters (40x2.2GHz, 64GB RAM)
control-plane
(40x2.2GHz, 256GB RAM, 8TB SSD RAID1)
user interaction, result aggregation
20 x Qserv workers (40x2.2GHz, 256GB RAM, 48TB HDD RAID5)

database workload and storage

=> 25 nodes Kubernetes cluster (v1.15.3)

deployed via Puppet using plugin
CRI:
CNI :

token-based authentication for cluster administration
Qserv Platform @ CC-IN2P3

Monitoring Tools

ElasticSearch/Grafana activity dashboard

Qserv workers Kubernetes hosts & in2p3-qserv-kubewatch % ®
L 3 | Aiouter un théme

kubewatch =
.
A deployment in namespace has been updated: gserv/ingest-dev
gserv_kubewatch APPLI 17147

kubewatch
A pod in namespace has been updated: gserv/qgserv-repl-ctl-0

Average load top hosts

kubewatch
A pod in namespace has been updated: gserv/qserv-repl-db-0

kubewatch
A pod in namespace has been updated: gserv/qserv-xrootd-
redirector-0

Load for ceqserv201.in2p3.fr Load for ccqserv202.in2p3.fr Load for ccqserv203.in2p3.fr

kubewatch
A pod in namespace has been updated: gserv/qserv-xrootd-
redirector-1

kubewatch
A pod in namespace has been updated: gserv/qserv-ingest-db-0

Qserv Platform @ CC-IN2P3

Benefits of Cloud-Native

Automated Qserv deployment

‘GitHub’

Repositories

Workstation

14

Automated Qserv deployment

@Travis cl Qserv images

GitHub Q - Docker Registry

Repositories

Workstation

15

Automated deployment: Cloud Native

,_?5 TravisCl Qservimages

GitHub - Docker Registry Coming soon:

Continous Delivery

+——

Repositories mi:
Workstation

Cloud
Infrastructure:
Google

Kubernetes Engine
Openstack

Storage:

~ 35TB Catalog
Google
Persistent Disk
Ceph

Automated deployment: bare-metal
CC-IN2P3@Lyon (~300TB)

NCSA@Illinois

Bare metal
infrastructure

17

Automated deployment: CI

) /For each commit I
?tHUb i g;’l:rctl EI?](; lagjcontainer Docker Registry

Workstation - Start Qserv pods
- Launch integration tests
- Push container to Docker hub

Kind @)

kind \=/

<
(embedded in travis-ci) :1:

@Travis Cl
= =

18

K8s + Microservice features

*
*
*
*

Automated scaling
Container scheduling
Auto-healing
Continuous deployment

* % %

Volume management (storage)
Easy monitoring

Healthcheck

Security

Worker Class Node (1.n)

zComp nnnnn H Contains & Uses Library Component I

19

The killer feature: workload portability

Result: Portability

Put your app on wheels and move it
whenever and wherever you need

Easily move your distributed
application anywhere
Kubernetes is supported, in
seconds.

ooooooooooooooooooo

Operators: adding sysadmin
knowledge inside k8s

Operators: both sysadmin + application experts

© Resize/Upgrade

© Reconfigure

© Backup

© Healing

The Sysadmin

Operators embed ops knowledge from the experts

4 N

AU)

ops knowledge from the

experts

See

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

—> @

SDK

OPERATOR (

operator
implementation
i.e. k8s controller

—

https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps

Deployments
StatefulSets
Autoscalers
Secrets
Config maps

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://cloud.google.com/blog/products/containers-kubernetes/best-practices-for-building-kubernetes-operators-and-stateful-apps

Operator SDK: types of operators

Basic Install Seamless Upgrades Full Lifecycle Deep Insights Auto Pilot

Automated application Patch and minor version App lifecycle, storage Metrics, alerts, log Horizontal/vertical scaling,
provisioning and upgrades supported lifecycle (backup, failure processing and workload auto config tuning, abnormal
configuration management recovery) analysis detection, scheduling tuning
<—— HELM >

A

. (A .

ANSIBLE

& RedHat

On-premise
VS
Public Cloud

Containers at Google

Each week, Google launches more than four billion
containers across its data centers around the world. These
containers house the full range of applications Google
runs, including user-facing applications such as Search,
Gmail, and YouTube.

Kubernetes was directly inspired by Google’s cluster
manager, internally known as Borg. Borg allows Google to
direct hundreds of thousands of software tasks across vast
clusters of machines numbering in the tens of thousands
— supporting seven businesses with over one billion users
each. Borg and Kubernetes are the culmination of Google’s
experience deploying resilient applications at scale.

Kubernetes
the Easy Way

Start a cluster with one-click

View your clusters and workloads in a

single pane of glass

Google keeps your cluster up and running

£Y Google Cloud

e Kubernetes clusters

®2 Workloads

a8 Discovery & load balancing
H Configuration

B Storage

Cloud Launcher

<1

= Google Cloud Platform e K8s Garage ~ Q

@ Kubernetes Engine & Create a Kubernetes cluster

A Kubernetes cluster is a managed group of unifo
Kubernetes. Learn more

Name

cluster-1

Description (Optional)

Location
® Zonal

Regional (beta)

Zone

us-centrall-a

Cluster Version

1.8.7-gke.1 (default)

Machine type
Customize to select cores, memory and GPUs.

1vCPU b < 3.75 GB memc

Public cloud: pros and cons

Pros
% Flexibility for infrastructure provisionning:

o setup a 40 nodes Qserv cluster in 0.5 days
o extend it to 50 nodes in 10 seconds
Excellent support from Google engineers
Easy to setup development clusters with few
maintenance
% Cool proprietary features

*

% Expensive for production platform
o 100K in 3 months for LSST
% Easy to get stuck with proprietary features
% Hide Kubernetes internals so may be difficult to
setup
% Run slower than bare-metal (~25%)

On-premise: pros and cons

Pros

% Flexibility on cluster setup

o DIY Kubernetes

o Fine-tune your components (local HDD)
% Require skilled engineers

% Ease to guarantee your workload portability
% Run faster than public cloud

Cons

% Difficult to retrieve the global cost

% Require manpower for setup and maintenance
% Hardware upgrade are cost-effective and slow
% Difficult to rebuild the cluster from scratch

il

AN

wipe

s e % S N

FEGE S TERI BT

L L L L L L EL L B L L L L L] L

29

